高级会员
已认证
随着电子信息时代的发展,高性能的导热材料备受关注,导热复合材料的制备是获取各项性能优异的导热材料行之有效的思路之一。导热填料与基体以分散复合、表面复合、层积复合和梯度复合等方式结合在一起,形成密集的热通道,得到导热性能优异的复合材料。随着电子设备的”轻薄短小”的发展,导热复合材料也呈现出轻量化、高导热的趋势。
高分子聚合物材料具有易加工成型、低密度、耐腐蚀、耐热性、低介电常数及优异的力学性能,使其广泛应用到电子设备、航空航天等领域。其中,大部分高分子聚合物的热导率都低于0.5Wm-1K-1,是热绝缘体,其低导热性能限制了其在导热领域的应用,因此提高高分子聚合物材料的导热性能成为研究的重点。
氮化硼不仅可有效提高聚合物基体的导热性,同时还能保持材料的电绝缘性,所以是制备填充型高导热、绝缘复合材料的首选。氮化硼(BN)包含六种晶型,常见的BN有立方氮化硼(c-BN)和六方氮化硼(h-BN)。c-BN与金刚石类似,一般用于制造切割工具。h-BN具有类似石墨的层状结构,具有出色的力学性能,其面内机械强度可以达500N/m。h-BN还具有出色的耐高温性能,在空气中抗氧化温度为900℃,在真空条件下更是可以达到2000℃。同时h-BN还具有超高的热导率和优良的绝缘性能。BN按形态可分为块状BN(h-BNs)、片状BN和管状BN,可通过合适的方法可将块状BN进行剥离得到片状BN。研究显示,可将氮化硼纳米管(BNNTs)分为单壁和多壁这两种结构。对于单壁氮化硼纳米管,可将其看作由h-BN单层平面卷曲而成,在h-BN平面中,B,N原子以SP2杂化,从而形成类似石墨的六角网状结构。而多壁氮化硼纳米管可看作由同轴单壁纳米管所形成。
填料/聚合物复合材料的性质依赖于填料的性质,如填料的大小、形状和在聚合物基体中的分散状态都会影响聚合物的导热性能。通常大粒径填料可以明显提高复合材料的导热系数,这是因为粒子间界面接触少、热阻较小;粒径也不能过大,否则填料与基体之间的空隙大,不利于导热通路的形成;小粒径填料易被基体包覆,导热粒子难以相互接触,从而导致复合材料的导热系数较低。

由于BN化学稳定性很好,不容易形成化学键,而且容易团聚,所以BN与基质材料的亲和力差,因此需要对其表面改性以增强与基体的亲和力并改善其在基体中的分散性。研究表明,BN表面功能化有助于降低BN的聚集和增强复合材料的热导率。BN的表面功能化显著增强了聚合物基体与BN的界面相互作用。硅烷偶联剂是最常用的BN界面改性剂。




