北京易科泰生态技术有限公司
高级会员第2年 参观人数:263070
  • 参考报价:电议
    型号:
    产地:捷克
    在线咨询
  • 详细介绍:


    FluorPen FP110手持式叶绿素荧光仪用于实验室、温室和野外快速测量植物叶绿素荧光参数,具有便携性强、精确度高、性价比高等特点;双键操作,具图形显示屏,内置锂电和数据存储,广泛应用于研究植物的光合作用、胁迫监测、除草剂检测或突变体筛选,还可用于生态毒理的生物检测,如通过不同植物对土壤或水质污染的叶绿素荧光响应,找出敏感植物作为生物传感器用于生物检测。FP110配备多种叶夹型号,用于不同的样品与研究。

    应用领域

    适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变筛选等。

    · 植物光合特性研究

    · 光合突变体筛选与表型研究

    · 生物和非生物胁迫的检测

    · 植物抗胁迫能力或者易感性研究

    · 农业和林业育种、病害检测、长势与产量评估

    · 除草剂检测

    · 教学

    功能特点:

    § 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅188g

    § 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数

    § 内置了所有通用叶绿素荧光分析实验程序,包括3套荧光淬灭分析程序、3套光响应曲线程序、OJIP快速荧光动力学曲线等

    § 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26OJIP–test参数

    § FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量

    § 具备无人值守自动监测功能

    § 内置蓝牙与USB双通讯模块,GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表

    § 配备多种叶夹型号:固定叶夹式(适于实验室内暗适应或夜间快速测量)、分离叶夹式(适用于野外暗适应测量)、探头式(透明光纤探头,具备叶片固定装置,用于非接触性测量监测或光适应条件下的叶绿素荧光监测)、用户定制式等

    § 可选配野外自动监测式荧光仪,防水防尘设计

    测量程序与功能

    · Ft:瞬时叶绿素荧光暗适应完成后FtF0

    · QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)ΦPSII (光适应状态)

    · OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化

    · NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。

    · LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。

    · PAR:光合有效辐射,测量环境中植物生长可以利用的400-700nm实际光强(限PAR型号)。

    技术参数

    · 测量参数包括F0FtFmFmQYQY_LnQY_DnNPQQpRfdPAR(限PAR型号)AreaMoSmPIABS/RC50多个叶绿素荧光参数,及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等

    · OJIP–test时间分辨率为10μs(每秒10万次),给出OJIP曲线和26个参数,包括F0FjFiFmFvVjViFm/F0Fv/F0Fv/FmMoAreaFix AreaSmSsNPhi_PoPsi_oPhi_EoPhi–DoPhi_PavPI_AbsABS/RCTRo/RCETo/RCDIo/RC

    · 测量程序:FtQYOJIPNPQ1NPQ2NPQ3LC1LC2LC3PAR(限PAR型号)、Multi无人值守自动监测

    · 叶夹类型:FP110/S固定叶夹式、FP110/D分离叶夹式、FP110/P探头式、FP110/X用户定制式

    · PAR传感器(限PAR型号)80o入射角余弦校正,读数单位μmol(photons)/m2.s,可显示读数,检测范围400-700 nm

    · 测量光:每测量脉冲**0.09μmol(photons)/m2.s10-100%可调

    · 光化学光:10-1000μmol(photons)/m2.s可调

    · 饱和光:**3000μmol(photons)/m2.s10-100%可调

    · 光源:标准配置蓝光470nm,可根据需求配备不同波长的LED光源

    · 检测器:PIN光电二极管,667–750nm滤波器

    · 尺寸大小:超便携,手机大小,134×65×33mm,重量仅188g

    · 存贮:容量16Mb,可存储149000数据点

    · 显示与操作:图形化显示,双键操作,待机8分钟自动关闭

    · 供电:可充电锂电池,USB充电,连续工作48小时,低电报警

    · 工作条件:055℃,095%相对湿度(无凝结水)

    · 存贮条件:-1060℃,095%相对湿度(无凝结水)

    · 通讯方式:蓝牙+USB双通讯模式

    · GPS模块:内置

    · 软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统

    操作软件与实验结果

    产地:捷克

    应用案例:

    20174月,美国国家航空航天局(NASA)新一代先进植物培养器(Advanced Plant HabitatAPH)搭载联盟号MS-04货运飞船抵达国际空间站。宇航员使用FluorPen手持仪叶绿素荧光仪在其中开展植物生理学及太空食物种植(growth of fresh food in space)的研究。

    参考文献

    1. F Danget al. 2019. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology 53(7): 3802-3810

    2. N Moghimiet al. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany70(12): 3357–3371

    3. M Rafiqueet al. 2019. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. Journal of Environmental Management247: 672-680

    4. P Soudeket al. 2019. Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environmental and Experimental Botany164: 84-100

    5. JA Pérez-Romeroet al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry135: 149-159

    6. D Shaoet al. 2019. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, DOI: 10.1093/aob/mcz067

    7. C Cirilloet al. 2019. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 10:742

    8. T Savchenkoet al. 2019. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany70(10): 2919–2932

    9. M Liuet al. 2019. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of The Total Environment670: 613-622

    10. PK Tiwariet al. 2019. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety176: 321-329

    11. JA Pérez-Romeroet al. 2018. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora. Journal of Plant Physiology220: 155-166

    12. SK Yadavet al. 2018. Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize. Proceedings of the National Academy of Sciences 88(1): 249-263

    13. D Balfagónet al. 2018. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry127: 194-199

    14. JI Vílchezet al. 2018. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9:284

    15. MC Sorrentinoet al. 2018. Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials351: 131-137

    16. E Niewiadomskaet al. 2018. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. Journal of Plant Physiology223: 57-64

    17. S Singhet al. 2018. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Journal of Photochemistry and Photobiology B: Biology178: 76-84

    18. EL Fryet al. 2018. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia186(4): 1113–-125

    附:OJIP参数及计算公式

    Bckg = background

    Fo: = F50μs; fluorescence intensity at 50 μs

    Fj: = fluorescence intensity at j-step (at 2 ms)

    Fi: = fluorescence intensity at i-step (at 60 ms)

    Fm: = maximal fluorescence intensity

    Fv: = Fm - Fo (maximal variable fluorescence)

    Vj = (Fj - Fo) / (Fm - Fo)

    Fm / Fo = Fm / Fo

    Fv / Fo = Fv / Fo

    Fv / Fm = Fv / Fm

    Mo = TRo / RC - ETo / RC

    Area = area between fluorescence curve and Fm

    Sm = area / Fm - Fo (multiple turn-over)

    Ss = the smallest Sm turn-over (single turn-over)

    N = Sm . Mo . (I / Vj) turn-over number QA

    Phi_Po = (I - Fo) / Fm (or Fv / Fm)

    Phi_o = I - Vj

    Phi_Eo = (I - Fo / Fm) . Phi_o

    Phi_Do = 1 - Phi_Po - (Fo / Fm)

    Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms)

    ABS / RC = Mo . (I / Vj) . (I / Phi_Po)

    TRo / RC = Mo . (I / Vj)

    ETo / RC = Mo . (I / Vj) . Phi_o)

    DIo / RC = (ABS / RC) - (TRo / RC)