参考报价:电议 型号:
产地:瑞士 在线咨询
|
CL-STEM阴极荧光分析系统 | |
Monch 4107是一个用于STEM,可以实现好的信噪比和高的光谱分辨率阴极发光检测器。它可以帮助研究人员实现对单个纳米粒子,量子点或原子缺陷测量进行超高分辨率的图像和高光谱图谱的检测。 当您使用STEM进行阴极荧光光谱的探测,能够*短的时间内达到所需的信噪比是至关重要的,这样您才可以在短时间内测试更多的样品。Attolight 采用创新技术,在与样品毫米级的间距范围内,实现了大面积区域宽立体角高效率收集光子,而且仅仅只需利用STEM上的一个扩展孔。 | |
Attolight M?nch 4107强大而高效。首先,反射镜经过精心设计,获得****的曲率半径和小型化水平;它可以适应在市场上大多数校正的STEM设备,同时保持足够的刚度和3个自由度,允许完成亚毫米级的调整。其次,Monch 4107 直接收集样品的阴极发光并耦合到光纤内,保证信号到达光谱仪的强度。*后,一个超快EMCCD相机测量信号并实现高的光谱分辨率,高光谱扫描能在几秒钟内完成。数据可以直接通过其他技术(EELS, EDS)的软件采集且并行显示。 | |
Monch 4107并非插件。这是一个从事电子显微镜和光学和光谱学多年的专业知识公司提供的解决方案。Attolight将用于阴极荧光SEM分析系统研发中的设计、制造技术推广到STEM设备。 Monch 4107包含3自由度快速校准荧光收集反射镜,光纤耦合高分辨率光谱仪,用于快速高光谱采集的scientific级高速相机,以及具有扫描模块STEM杆。 | |
产品参数: 测试模式: 阴极荧光高光谱mapping. 光学部分:
探测器部分:
| 微定位系统:
系统控制:
安装要求:
(上下两个极靴之间大于4mm)
μm |
主要特点:
| 应用领域:
氮化物半导体 (GaN, InGaN, AlGaN...); III-V族半导体(GaP,InP,GaAs...); II-VI族半导体(CdTe,ZnO...)
(例如:InGaN材料中In富集)
|
Monch 4107有一个坚实的出版记录,其中有关于纳米等离子激元,量子纳米光学,单个量子阱的实时阴极发光探测,非线性学探测等报道。 已发表文献: (1)lMeuret, S., et al. Photon Bunching in Cathodoluminescence. Physical Review Letters 114, 197401 (2015) (2)lPantzas, K., et al. Role of compositional luctuations and their suppression on the strain and luminescence of InGaN alloys. Journal of Applied Physics 117, 055705 (2015) (3)lLosquin, A. et al. Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters 15, 1229 - 1237 (2015). (4)lTizei, L.H.G., et al. A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters 105, 143106 (2014) (5)lBourrellier, R., et al. Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics 1, 857 (2014) (6)lKociak, M., et al. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique 15, 158-175 (2014) (7)lKociak, M. & St¨¦phan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews 43, 3865-3883 (2014) (8)lTizei, L.H.G., et al. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires.Journal of Physics: Condensed Matter 25, 505303,(2013) (9)lMahfoud, Z., et al. Cathodoluminescence in a Scanning Transmission Electron Microscope: A Nanometer-Scale Counterpart of Photoluminescence for the Study of II-VI Quantum Dots. The Journal of Physical Chemistry Letters 4, 4090-4094 (2013) (10)lPierret, A., et al. Structural and optical properties of AlxGa1-xN nanowires. Physica Status Solidi RRL 7, 868 (2013) (11)lTizei, L.H.G. and Kociak, M. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters 110, (2013) (12)lZagonel, L.F., et al. Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology 23, 455205 (2012) (13)lTizei, L.H.G. and Kociak, M. Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties. Nanotechnology 23, 175702 (2012) (14)lTourbot, G., et al. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 23, 135703 (2012) (15)lJacopin, G., et al. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Applied Physics Express 5, 014101 (2011) (16)lZagonel, L.F., et al. Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure.Nano Letters 11, 568–573 (2011) |