量子科学仪器贸易(北京)有限公司
高级会员第2年 参观人数:113737
  • 参考报价:电议
    型号:
    产地:德国
    在线咨询
  • 详细介绍:


    高温高压光学浮区炉

    德国SciDre公司推出的高温高压光学浮区法单晶炉能够提供2200–3000℃以上的生长温度,晶体生长腔压力可达300bar,甚至10-5mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。

    应用领域

    适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。

    耐高温、耐高压、高真空、

    高透光率、拆装简便的样品腔

    由德国弗劳恩霍夫应用光

    和精密工程研究所优化设计的高反射率镜面,

    镜体位置可由高精度步进马达控制调节

    光阑式光强控制器

    更方便地调节熔区温度,延长灯泡寿命

    仿真化触屏控制软件

    界面友好,操作简单

    熔区测温选件**测温技术

    可实时监测加热区温度

    多路独立气路控制选件

    可控制N2、O2、Ar、空气等的流量和压力,

    并可对气体进行比例混合与熔区进行反应

    气体除杂选件

    可使高压氩气中的氧含量达到10-12ppm

    退火选件

    可对离开熔区的单晶棒提供

    高达1100℃退火温度和高压氧环境

    SciDre单晶炉特点

    ● 采用垂直式光路设计

    ● 采用高照度短弧氙灯,多种功率规格可选

    ● 熔区温度:>3000℃

    ● 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选

    ● 氧气/氩气/氮气/空气/混合气等多种气路可选

    ● 采用光栅控制技术,加热功率从0-100% 连续可调

    ● 样品腔可实现低至10-5mbar真空环境

    ● 丰富的可升级选件

    SciDre单晶炉技术参数

    熔区温度:高达2000 - 3000℃以上

    熔区压力:高至10、50、100、150、300 bar可选

    熔区真空:1*10-2 mbar或 1*10-5 mbar可选

    熔区气氛:Ar、O2、N2等可选

    气体流量:0.25 – 1 L/min流量可控

    氙灯功率:3kW至15kW可选

    料棒台尺寸:6.8mm或9.8mm可选

    拉伸速率:0.1-50mm/h

    调节速率:0.6 mm/s

    拉伸尺寸:130mm,150mm,195mm可选

    旋转速率:0-70rpm

    用电功率:400V三相 63A 50Hz

    主机尺寸:330cm*163cm*92cm (不同规格略有差异)

    发表文章

    1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method Chemical Physics Letters, Volume 738, 136916

    2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10 Phys. Rev. B 101, 104104

    3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020, 10(5), 355

    4. (2020)Synthesis and characterization of bulk Nd1- SrxNiO2 and Nd1- xSrxNiO3 Phys. Rev. Materials 4, 084409

    5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101, 195122

    6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019, 9(7), 324

    7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524, 15 October 2019, 125157

    8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce) Phys. Rev. Materials 3, 024204

    9. (2019)Pushing boundaries: High pressure, supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709

    10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43

    11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4), 044005

    12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy) 1- xCaxCoO3-δJournal of Solid State Chemistry 254, 69-74

    13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13, 864–869

    14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5), 2730-2735.

    15. (2017). High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals. Journal of Crystal Growth, 462, 50-59.

    16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562.

    17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.

    18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals, 6(8), 98.

    19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth, 427, 94-98.

    20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3, 062512.

    21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics, 48(16), 164016.

    22. (2014). Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 26(24), 7172-7182.

    23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B, 90(6), 064414.(Also on archiv.org.)

    24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth, 401, 617-621.(Also on arxiv.org.)

    25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B, 88(15), 155138. (Also on arxiv.org.)

    26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design, 13(9), 3925-3934.

    27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98(25), 252501.

    28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth, 318(1), 995-999.

    29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth, 318(1), 1043-1047.

    30. (2010). Influence of heat distribution and zone shape in the floating zone growt·h of selected oxide compounds. Journal of materials science, 45(8), 2223-2227.

    31. (2009). Highly ordered, half-metallic Co2FeSi single crystals. Applied Physics Letters, 95(16), 161903.

    32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth, 311(5), 1273-1277(Also on uni-heidelberg.de.)

    33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth, 310(7), 2268-2276.

    用户单位

    中国科学院物理研究所

    中国科学院固体物理研究所

    北京师范大学

    中山大学

    南昌大学

    上海大学