上海泽泉科技股份有限公司
高级会员第2年 参观人数:91537
  • 参考报价:电议
    型号:
    产地:荷兰
    在线咨询
  • 详细介绍:


    全球检测限和灵敏度**的植物乙烯测量系统

    *适合超高灵敏度测量,特别是连续监测

    主要功能

    该系统主要用于植物研究的乙烯监测,如生长发育、基因表达、植物病原体的相互作用、与其他植物激素的相互作用、蔬果收货后储存、抗逆性研究(干旱、高温、重金属)等。其中检测仪ETD-300结合激光技术与声学照相技术,实时快速测量乙烯(C2H4)气体**浓度;阀门控制箱VC-6完全自动化和电脑控制,接一个即可以使单个气体检测仪实现6个样品的同时测量,单个乙烯检测仪可以接一个或多个阀门控制箱;烃分解器CAT-1则利用铂金颗粒催化烃氧化分解为水蒸气和CO2,为系统提供无烃干扰的样品空气。

    应用领域
    用于环境、医学、农业、工业、生态、生物等监测领域。特别适合植物生理、发育研究的超灵敏乙烯测量。

    产品特点
    实时测量,连续无间断监测
    测量范围:0-5ppmv,检出限:0.3ppbv
    灵敏、快速、稳定性好,无干扰
    操作简便,结实耐用,所需维护少
    友好的用户操作软件界面
    系统组成
    乙烯气体检测仪ETD-300
    阀门控制箱VC-6
    烃分解器CAT-1
    注:系统中3个仪器都可以单独使用。
    主要技术参数
    参数
    乙烯气体检测仪ETD-300
    阀门控制箱VC-6
    烃分解器CAT-1
    测量范围
    0-5 ppmv
    /
    /
    检出限
    0.3 ppbv
    /
    /
    噪音(2σ)
    0.3 ppbv
    /
    /
    精度
    <1% 0.3 ppbv
    0.2% FS
    /
    稳定性
    <1%超过24小时
    /
    /
    零点漂移
    +/-1 ppbv
    /
    /
    测量时间
    5 s
    /
    /
    响应时间
    30 s (当流量为1 l/h)
    300 ms
    /
    流量
    0.25-5 l/h
    0.25-5 l/h
    0-30 l/h
    校准
    使用标准混合气,每年一次
    /
    /
    通道数量
    /
    6(可增加至12, 18)
    /
    测定模式
    /
    连续流动测定,积累后测定
    /
    气体供应压力
    /
    0.5-4 Bar
    /
    过压阀
    5 Bar时打开
    /
    滤膜类型
    /
    粒径>7µm
    /
    **稀释浓度
    /
    /
    100 ppm
    输出浓度
    /
    /
    < 100 pptv
    压力
    /
    /
    0-6 atm
    活性催化剂
    /
    /
    Pt/SiO2
    催化温度
    /
    /
    150 – 250
    预热时间
    30 min
    /
    < 10 min
    尺寸
    50x50x14cm (48.3cm 3U机架)
    40x50x10cm (48.3cm 2U机架)
    40x25x20cm (48.3cm 3U半机架)
    工作温度/湿度
    10-28 /0-95 % RH
    5-40/0-95 % RH
    5-40 /0-95 %RH
    电源要求
    90-264 VAC, 47-63 Hz
    90-264 VAC, 47-63 Hz
    90-264 VAC, 47-63 Hz
    功耗
    <150 W
    <60 W
    85 W
    进气接口
    1/8'' Swagelok
    用于接外径1/8''的管
    1/8'' Swagelok
    数据输出
    USB RS232CSV格式
    USBCSV格式
    /
    显示
    蓝色背光LCD
    LED指示灯
    /
    部分利用ETD发表的文献
    1. Cristescu S.M., Persijn S.T., te Lintel Hekkert S., Harren F.J.M. Laser-based systems for trace gasdetection in life sciences, (2008), Appl. Phys. B 92, 343-349
    2. de Gouw J.A., Hekkert S. T. L., Mellqvist J., Warneke C., Atlas E.L., Fehsenfeld F.C., Fried A., Frost G.J., Harren F.J.M., Holloway J.S., Lefer B., Lueb R., Meagher J.F., Parrish D.D., Patel M., Pope L., Richter D., Rivera C., Ryerson T.B., Samuelsson J., Walega J., Washenfelder R.A., Weibring P., Zhu X., Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy, (2009), Environ. Sci. Technol. 43, 2437–2442
    3. McDonnell L., Plett J.M., Andersson-Gunneras S., Kozela J.D., Dominique V.D. S., Bernard R.G., Björn S., Sharon R., Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase, (2009), Physilogia Plantarum 136, 94-109
    4. Clarke S.M., Cristescu S.M., Miersch O., Harren F.J. M., Wasternack C., Mur L.A. J., Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana, (2009), New Phytologist 182:175-187
    5. Hermans C., Vuylsteke M., Cristescu S.M., InzéD., Verbruggen N., Systems analysis of the responses to long term magnesium, deficiency and restoration in Arabidopsis thaliana highlights a possible role of the circadian clock in the plant adaptation, (2010), New Phytologist 187: 132-144
    6. Cristescu S.M., de Martinis D., te Lintel Hekkert S., Parker D.H., Harren F.J.M., Ethylene production by Botrytis cinerea in vitro and in tomato fruit , (2002), Applied and Environmental Microbiology 68, 5342-5350
    7. Cristescu S.M., Woltering E.J., Harren F.J.M., Real time monitoring of ethylene during fungal-plant interaction by laser-based photoacoustic spectroscopy in “Food Mycology, A Multifaceted Approach to Fungiand Food”, (2006), J. Dijksterhuis and R.A. Samson, Eds., Traylor and Francis New York, USA 25-47
    8. Staal M., Stal L.J., te Lintel-Hekkert S., Harren F.J.M., Light action spectra of N2 fixation by heterocystous cyanobacteria from the Baltic Se, (2003), Journal of Phycology 39, 668-677
    9. Severin, J Stal L., Light dependency of nitrogen fixation in a coastal cyanobacterial mat, (2008), The ISME Journal 2, 1077–1088; doi:10.1038/ismej.2008.63
    10. Photoacoustic trace gas detection of ethene released by UV-induced lipid peroxidation in humans, S. Cristescu, R. Berkelmans, S. te Lintel Hekkert, B. Timmerman, D. Parker, F. Harren, Proceedings SPIE Vol. 4162 (Bellingham, USA, 2000) 101-107
    11. Moeskops B.W.M., Steeghs M.M.L., van Swam K., Cristescu S.M., Scheepers P.T.J., Harren F.J.M., “Realtime trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo”. (2006), Physiological Measurement 27, 1187-1196
    12. Roeder S., Dreschler K., Wirtz M., Cristescu S.M., Harren F.J.M., Hell R., Piechulla B.. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. (2009), Molecular Biology 70, 535-546
    13. Salman A., Filgueiras H., Cristescu S., Lopez-Lauri F., Harren F., Sallanon H., Inhibition of wound-induced ethylene does not prevent red discoloration in fresh-cut endive (Cichorium intybus L.). (2009), Eur. Food Res. Technol. 228, 651-657
    14. Mur L. A.J., Lloyd A.J., Cristesc S.M.u, Harren F.J.M., Hal M.l., Smith A., Biphasic ethylene production during the hypersensitive response in Arabidopsis: A window into defence priming mechanisms? (2009), Plant Signalling & Behaviour 4 (7), 610 – 613
    15. Yordanova Z.P., Iakimova E.T., Cristescu S.M., Harren F.J. M., Kapchina-Toteva V.M., Woltering E.J., Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. (2010), Cell Biology International 34, 301-308
    16. Benlloch-González M., Romera J., Cristescu S., Harren F., María Fournier J., Benlloch M., K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants, (2010), Journal of Experimental Botany 61, 1139 – 1145
    17. Yordanova Z.P., Kapchina – Toteva V.M., Woltering E.J., Cristescu S.M., Harren F.J.M., Iakimova E.T., Mastoparan- induced cell death signaling in Chlamydomonas Reinhardtii. (2009), Biotechnology & Biotechnological equipment-special issue, Vol.23: 730-734
    18. Hélène Lequeux, Christian Hermans, Stanley Lutts, Nathalie Verbruggen, Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile, (2010), Plant Physiology and Biochemistry 48, 673-682
    19. Lloyd A.J., William Allwood J., Winder C., Dunn W.B., Heald J., Cristescu S.M., Harren F.J. M., Goo-dacre R., Smith A.R., Mur L.A. J., Metabolomic approaches indicate that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea, (2011),Plant Journal 67(5), 852-868.
    20. Moniuszko G., Laska-Oberndorff A., Cristescu S.M., Harren F.J.M., Sirko A., Ethylene emitted by nylon membrane filters questions their usefulness to transfer plant seedlings between media, (2011), BioTechniques 51:doi 10.2144/000113762
    21. Gallego-Bartolomé J., Arana M.V., Vandenbussche F., Žádníková P., Minguet E.G., Guardiola V., Van Der Straeten D., Benkova E., AlabadíD., Blázquez M. A., Hierarchy of hormone action controlling apical hook development in Arabidopsis, (2011), The Plant Journal 67, 622–634
    22. Liesbeth D.G., Laury C., Jasper D., Jan D., Ivo R., Wim H. V., Thomas M., Gerrit T. S. B., Andy L. P., Nicholas P. H., Peter H., Dominique V.D.S., Blackwell Publishing Ltd Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis gai eto2-1 double mutant, (2008), New Phytologist 177, 128–141
    产地:荷兰Sensor Sense B.V.