北京英格海德分析技术有限公司
高级会员第2年 参观人数:76028
  • 参考报价:电议
    型号:
    产地:英国
    在线咨询
  • 详细介绍:


    优势

      独特的:结合在线质谱的高压穿透曲线分析仪

      全自动:用户变成进行全自动运行实验。

      优化的样品床:经大量实践研究而得到**化的2 cc样品床

      简介

      ABR是一款具有完全可编程操作的专用穿透曲线分析仪,包括对总压力、流速、组分和温度的控制。

      样品床的尺寸可以根据用户需要进行更换。利用升温和气体吹扫(或抽真空)对样品进行原位干燥。反应气体混合物流过样品床,同时用集成的在线质谱仪对下游气体进行实时监测。

    •   可对总压力、流速、组分和温度编程控制。

    •   优化的研究级样品床设计

    •   超低死体积,使得质谱信号响应迅速

    •   自动进行吹扫气体和实验气体的转换

    •   具备气体-蒸气和蒸气-蒸气分离配置

    •   实验压力可选配至50 bar

    •   完全集成的在线质谱和优化的采样设计

    应用

      ABR的主要目的是满足研究人员希望表征那些没有合成较大样品量的时间或费用的少量新型吸附剂,如MOFs、ZIF、COF和相关多孔材料等。R

      

    应用领域

      ?空气分离

      ?二氧化碳捕获和存储

      ?从流出物流中去除有毒或有害的气体

      ?回收稀有(**)气体

      ?天然气和沼气升级

     

      技术规格

      1.自动穿透反应系统

      2.反应床体积: 2cc

      3.工作压力:10bar/50bar

      4.**工作温度:0~300℃

      5.温度精度:±0.025 ℃

      6.流量范围:3~1000ml /min

      7.可选配超高真空泵站:真空度达10-8mbar

      8.Hiden自己品牌在线质谱仪

      8.1 质量数范围:1~200 amu

      8.2 响应时间: 200毫秒

     

    应用案例

      Breakthrough curves determined for 13X Zeolite

      Breakthrough curves determined for a nitrogen/oxygen mixture at 10 bar and 25℃ for 13X zeolite. The concentration is the mass spectrometer signal in arbitrary units.

    国内用户:

    1. 上海科技大学|物质科学与技术学院

    2. 福建师范大学材料科学与工程学院

    Academic References

    Listed below are peer-reviewed publications featuring data measured using Hiden Isochema ABR breakthrough analyzers. All data uses Hiden Isochema ABR breakthrough analyzers with integrated Hiden DSMS dynamic sampling mass spectrometers. In all cases, data was measured by end users at their laboratory.

    1. Porous organic cages for sulfur hexafluoride separation

    T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Tribello, K. E. Jelfs, and A. I. Cooper

    Journal of American Chemical Society (2016)

    DOI: 10.1021/jacs.5b11797

    2. Metal-organic framework with optimally selective xenon adsorption and separation

    D. Banerjee, C. M. Simon, A. M. Plonka, R. K. Motkuri, J. Liu, X. Chen, B. Smit, J. B. Parise, M. Haranczyk and P. K. Thallapally

    Nature Communications (2016)

    DOI: 10.1038/ncomms11831

    3. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants

    J. Liu, P. K. Thallapally and D. Strachan

    Langmuir, 2012, 28 (31), pp 11584–11589

    DOI: 10.1021/la301870n

    4. Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study

    J. Liu, P. K. Thallapally and B. P. McGrail

    J. Phys. Chem. C, 2012, 116 (17), pp 9575–9581

    DOI: 10.1021/jp300961j

    5. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework

    S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang and M. Schr?der

    Nature Chemistry 7, 121–129 (2015)

    DOI: 10.1038/nchem.2114

    6. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. M. Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally and A. I. Cooper

    Nature Materials 13, 954–960 (2014)

    DOI: 10.1038/nmat4035