15 年

金牌会员

已认证

每周分享

今天给大家分享的是2015年《Dalton Transactionsl》上发表的一篇名为:Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity

文章摘要如下:

We disclose the fabrication of a mediator-free direct Z-scheme photocatalyst system BiVO4/g-C3N4 using a mixed-calcination method based on the more reliable interfacial interaction. The facet coupling occurred between the g-C3N4 (002) and BiVO4 (121), and it was revealed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The crystal structure and optical properties of the as-prepared samples have also been characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra (DRS) in details. The photocatalytic experiments indicated that the BiVO4/g-C3N4 composite photocatalysts display a significantly enhanced photocatalytic activity pertaining to RhB degradation and photocurrent generation (PC) compared to the pristine BiVO4 and g-C3N4. This remarkably improved photocatalytic performance should be attributed to the fabrication of a direct Z-scheme system of BiVO4/g-C3N4, which can result in a more efficient separation of photoinduced charge carriers than band–band transfer, thus endowing it with the much more powerful oxidation and reduction capability, as confirmed by the photoluminescence (PL) spectra and electrochemical impedance spectra (EIS). The Z-scheme mechanism of BiVO4/g-C3N4 heterostructure was verified by a series of combined techniques, including the active species trapping experiments, NBT transformation and terephthalic acid photoluminescence probing technique (TA-PL) over BiVO4/g-C3N4 composites and the pristine samples. The present work not only furthered the understanding of mediator-free Z-scheme photocatalysis, but also shed new light on the design of heterostructural photocatalysts with high-performance.

该文章中材料表征采用的是美国麦克仪器ASAP 2460

详情可参考下面链接:


美国麦克仪器  2016-01-27  |  阅读:1732
最新动态
更多  
推荐产品 供应产品

分类

留言咨询

留言类型

需求简述

联系信息

联系人

单位名称

电子邮箱

手机号

图形验证码

点击提交代表您同意《用户服务协议》《隐私协议》