Influence of polyamide membrane surface chemistry on gypsum scaling behavior

a    Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA

b    Department of Chemical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA

 

摘要:Mineral scaling of thin-film composite desalination membranes is affected by the surface chemistry and roughness of the membrane polyamide selective layer, but the relative contributions of these surface properties to scaling is unknown. We studied the influence of differences in polyamide surface chemistry on gypsum (calcium sulfate dihydrate) scaling of thin-film composite membranes, independent of surface roughness, with the goal of improving scaling resistance through changes to membrane surface chemistry. Smooth polyamide films and thin-film composite membranes were created using a molecular layer-by-layer deposition technique, and the surface chemistry of the polyamide films was enriched with amine or carboxyl functional groups by varying the final monomer deposition step in the layer-by-layer assembly process. Polyamide films and composite membranes with different surface chemistry were subjected to gypsum scaling by both homogeneous and heterogeneous nucleation mechanisms. Results from quartz crystal microbalance experiments and dynamic membrane scaling tests show that differences in the polyamide surface chemistry do not influence long-term gypsum scaling behavior. We conclude that hydrodynamic conditions have a greater effect than differences in surface chemistry on the gypsum scaling behavior of polyamide thin-film composite membranes.

                                                 


布鲁克海文  2018-11-29  |  阅读:2574
最新动态
更多  
Nanobrook Omni测量应用案例-63
公司动态
2018-12-26
推荐产品 供应产品

分类

虚拟号将在 秒后失效

立即拨打

为了保证隐私安全,平台已启用虚拟电话,请放心拨打
(暂不支持短信)

×
是否已沟通完成
您还可以选择留下联系电话,等待商家与您联系

需求描述

单位名称

联系人

联系电话

已与商家取得联系
同意发送给商家
留言咨询

留言类型

需求简述

联系信息

联系人

单位名称

电子邮箱

手机号

图形验证码

点击提交代表您同意《用户服务协议》《隐私协议》