美国布鲁克海文仪器公司上海代表处
金牌会员第6年 参观人数:534480
    Nanobrook Omni测量应用案例-65

    State Key Laboratory of Heavy Oil Processing, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People’s Republic of China

     

    摘要:A new kind of self-dispersing silica nanoparticle was prepared and used to enhance oil recovery in spontaneous imbibition tests of low-permeability cores. To avoid the aggregation of silica nanoparticles, a new kind of silica nanoparticle was prepared through the surface modification with vinyltriethoxysilane and 2-mercaptobenzimidazole as modified agents. Transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and ζ potential measurements were employed to characterize the modified silica nanoparticles. Dispersing experiments indicated that modified silica nanoparticles had superior dispersity and stability in alkaline water. To evaluate the performance of silica nanofluids for enhanced oil recovery compared to pH 10 alkaline water and 5 wt % NaCl solution, spontaneous imbibition tests in sandstone cores were conducted. The results indicated that silica nanofluids can evidently improve oil recovery. To investigate the mechanism of nanoparticles for enhanced oil recovery, the contact angle and interfacial tension were measured. The results showed that the adsorption of silica nanoparticles can change the surface wettability from oil-wet to water-wet and silica nanoparticles showed a little influence on oil/water interfacial tension. In addition, the change of the oil droplet shape on the hydrophobic surface was monitored through dynamic contact angle measurement. It was shown that silica nanoparticles can gradually detach the oil droplet from the hydrophobic surface, which is consistent with the structural disjoining pressure mechanism.

                                                     


联系电话
关闭
虚拟号将在180秒后失效,请在有效期内拨打
为了保证隐私安全,平台已启用虚拟电话,
请放心拨打。(暂不支持短信)
立即拨打